
Defeating x64:
 Modern Trends of Kernel-Mode Rootkits

Aleksandr Matrosov

Eugene Rodionov

Who we are?

 Malware researchers at ESET

 - rootkits analysis

 - development of cleaning tools

 - tracking new rootkit techniques

 - investigation of cybercrime groups

http://www.joineset.com/

Agenda

 Evolution of payloads and rootkits

 Bypassing code integrity checks

 Attacking Windows Bootloader

 Modern Bootkit details:

 Win64/Olmarik

 Win64/Rovnix

 How to debug bootkit with Bochs emulator

 HiddenFsReader as a forensic tool

 Evolution of Rootkits

Evolution of Rootkit Installation

exploit payload dropper rootkit

Evolution of Rootkit Installation

Malicious

Web-site

Exploit

Vulnerability

Bypass

ASLR/DEP

Escape

Sandbox

Execute

Payload

Download

Rootkit
Escalate

Local Privilege

Install Rootkit
Kernel-Mode

Exploit

Dropper

 Evolution of Rootkit Features

bypassing HIPS/AV

x86

privilege escalation

installing rootkit

driver

Rootkit

self-defense

surviving reboot

injecting payload

U
s
e
r

m
o

d
e

K
e

rn
e

l
m

o
d

e

Dropper

 Evolution of Rootkit Features

bypassing HIPS/AV

x86 x64

privilege escalation

installing rootkit

driver

Rootkit

self-defense

surviving reboot

injecting payload

Rootkit

Rootkit

self-defense

surviving reboot

injecting payload

bypassing signature

check

bypassing

MS PatchGuard

U
s
e
r

m
o

d
e

K
e

rn
e

l
m

o
d

e

o Kernel-Mode Code Signing Policy:

 It is “difficult” to load unsigned kernel-mode driver

o Kernel-Mode Patch Protection (Patch Guard):

 SSDT (System Service Dispatch Table)

 IDT (Interrupt Descriptor Table)

 GDT (Global Descriptor Table)

 MSRs (Model Specific Registers)

Obstacles for 64-bit Rootkits

Bypassing Code Integrity Checks

Types of Integrity Checks

o PnP Device Installation Signing Requirements

o Kernel-Mode Code Signing Policy

 Enforced on 64-bit version of Windows Vista and later

versions

64-bit Windows Vista and
later

32-bit Windows Vista
and later

Boot-start driver
 

Non boot-start PnP driver
 

Non boot-start, non-PnP
driver





(except stream protected media
drivers)

Subverting KMCSP

o Abusing vulnerable signed legitimate kernel-mode

driver

o Switching off kernel-mode code signing checks by

altering BCD data:

 abusing WinPe Mode

 disabling signing check

 enabling test signing

o Patching Bootmgr and OS loader

Bypassing Integrity Checks

USER-MODE

Bypassing Integrity Check Techniques

KERNEL-MODE

TESTSIGNING ON

DISABLE INTEGRITY CHECKS

VBR
(Volume Boot Record)

System Boot Modification

MBR
(Master Boot Record)

Attacking Windows Bootloader

Boot Process

Full Kernel

Initialization
MBR

First

User-Mode

Process

Kernel Services BIOS Services

BIOS

Initialization

Boot

Loader

Early Kernel

Initialization

Hardware

Load MBR

Load VBR

Load ntldr

Load kernel
and boot

start drivers

real mode

real mode

real mode/
protected mode

Load MBR

Load VBR

Load
bootmgr

Load
winload.exe or
winresume.exe

real mode

real mode

real mode/
protected mode

Load kernel
and boot

start drivers

real mode/
protected mode

Boot Process of pre
Windows Vista OS

Boot Process of post
Windows Vista OS

MBR – Master Boot Record

VBR – Volume Boot Record

Boot Process of Windows OS

Boot Process with Bootkit Infection

load malicious

MBR/VBR

NT kernel

modifications

load rootkit

driver

Code Integrity Check

Bootmgr OS loader
OS kernel

dependencies

OS kernel

Boot-start
drivers

Non boot-start
kernel-mode drivers

Evolution of Bootkits

o Bootkit PoC evolution:

 eEye Bootroot (2005)

 Vbootkit (2007)

 Vbootkit v2 (2009)

 Stoned Bootkit (2009)

 Evilcore x64 (2011)

o Bootkit Threats evolution:

 Win32/Mebroot (2007)

 Win32/Mebratix (2008)

 Win32/Mebroot v2 (2009)

 Win64/Olmarik (2010/11)

 Win64/Rovnix (2011)

Win64/Olmarik

Installation on x86 vs. x64

TDL4 Installation on x86

Adjust
SeLoadDriver

privilege
fail success

Copy itself into
PrintProcessor

director

Check OS
version

Copy itself into
%TMP% directory

Set IMAGE_FILE_DLL
flag in the PE header

Call
DeletePrintProvidorW

API

Call
AddPrintProvidorW

API

Vista/Win7

Exploitation
MS10-092

successfail

Create
manifest requesting

admin privilege

Call
ShellExecute

Fail
install

WinXP

TDL4 Installation on x64

Write FS image,
patch MBR and Adjust

SE_SHUTDOWN_PRIVILEGE
fail success

Copy itself into
%TMP% directory

Exploitation
MS10-092

success

fail

Create
manifest requesting

admin privilege

Call
ZwRaiseHardError

to create BSOD

Prepare hidden FS
image

Report to C&C

Restart
Dropper

Call
ShellExecute

fail

success

BCD

BCD
Object1

BCD
Element1

BCD
Element2

BCD
Object2

BCD
Element3

Boot Configuration Data (BCD)

BCD Object

Inheritable

Application

Windows boot
manager

Windows boot
loader

Ntldr Device

BCD Elements determining KMCSP
(before KB2506014)

BCD option Description

BcdLibraryBoolean_DisableIntegrityCheck

(0x16000020)

disables kernel-mode code integrity

checks

BcdOSLoaderBoolean_WinPEMode

(0x26000022)

instructs kernel to be loaded in

preinstallation mode, disabling

kernel-mode code integrity checks

as a byproduct

BcdLibraryBoolean_AllowPrereleaseSignatures

(0x16000049)

enables test signing

BCD Elements determining KMCSP
(before KB2506014)

BCD option Description

BcdLibraryBoolean_DisableIntegrityCheck

(0x16000020)

disables kernel-mode code integrity

checks

BcdOSLoaderBoolean_WinPEMode

(0x26000022)

instructs kernel to be loaded in

preinstallation mode, disabling

kernel-mode code integrity checks

as a byproduct

BcdLibraryBoolean_AllowPrereleaseSignatures

(0x16000049)

enables test signing

Abusing Win PE mode: TDL4 modules

Module name Description

mbr (infected) infected MBR loads ldr16 module and restores original

MBR in memory

ldr16 hooks 13h interrupt to disable KMCSP and substitute

kdcom.dll with ldr32 or ldr64

ldr32 reads TDL4’s kernel-mode driver from hidden file

system and maps it into kernel-mode address space

ldr64 implementation of ldr32 module functionality for 64-bit

OS

int 13h – service provided by BIOS to communicate with IDE HDD controller

Load infected MBR
Infected mbr is

 loaded
and executed

Load “ldr16” from
hidden file system

Hook BIOS int 13h
handler and

restore original
MBR

“ldr16” is
 loaded

and executed

Load VBR

Original mbr is
loaded

and executed

Load bootmgr

VBR is loaded
and executed

read bcd

Bootmgr is loaded
and executed

Load winload.exe

Substitute

EmsEnabled
 option with WinPe

Load ntoskrnl.exe,
hal.dll,kdcom.dll,b
ootvid.dll ant etc

distrort
/MININT option

Call
KdDebuggerInitialize1
from loaded kdcom.dll

substitute
kdcom.dll

with”ldr32”
or “ldr64"

Continue kernel
initialization

Load ”drv32”
 or “drv64"

Load bootmgr

Abusing Win PE mode: Workflow

Load infected MBR
Infected mbr is

 loaded
and executed

Load “ldr16” from
hidden file system

Hook BIOS int 13h
handler and

restore original
MBR

“ldr16” is
 loaded

and executed

Load VBR

Original mbr is
loaded

and executed

Load bootmgr

VBR is loaded
and executed

read bcd

Bootmgr is loaded
and executed

Load winload.exe

Substitute

EmsEnabled
 option with WinPe

Load ntoskrnl.exe,
hal.dll,kdcom.dll,b
ootvid.dll ant etc

distrort
/MININT option

Call
KdDebuggerInitialize1
from loaded kdcom.dll

substitute
kdcom.dll

with”ldr32”
or “ldr64"

Continue kernel
initialization

Load ”drv32”
 or “drv64"

Load bootmgr

Abusing Win PE mode: Workflow

Load infected MBR
Infected mbr is

 loaded
and executed

Load “ldr16” from
hidden file system

Hook BIOS int 13h
handler and

restore original
MBR

“ldr16” is
 loaded

and executed

Load VBR

Original mbr is
loaded

and executed

Load bootmgr

VBR is loaded
and executed

read bcd

Bootmgr is loaded
and executed

Load winload.exe

Substitute

EmsEnabled
 option with WinPe

Load ntoskrnl.exe,
hal.dll,kdcom.dll,b
ootvid.dll ant etc

distrort
/MININT option

Call
KdDebuggerInitialize1
from loaded kdcom.dll

substitute
kdcom.dll

with”ldr32”
or “ldr64"

Continue kernel
initialization

Load ”drv32”
 or “drv64"

Load bootmgr

Abusing Win PE mode: Workflow

Load infected MBR
Infected mbr is

 loaded
and executed

Load “ldr16” from
hidden file system

Hook BIOS int 13h
handler and

restore original
MBR

“ldr16” is
 loaded

and executed

Load VBR

Original mbr is
loaded

and executed

Load bootmgr

VBR is loaded
and executed

read bcd

Bootmgr is loaded
and executed

Load winload.exe

Substitute

EmsEnabled
 option with WinPe

Load ntoskrnl.exe,
hal.dll,kdcom.dll,b
ootvid.dll ant etc

distrort
/MININT option

Call
KdDebuggerInitialize1
from loaded kdcom.dll

substitute
kdcom.dll

with”ldr32”
or “ldr64"

Continue kernel
initialization

Load ”drv32”
 or “drv64"

Load bootmgr

Abusing Win PE mode: Workflow

Load infected MBR
Infected mbr is

 loaded
and executed

Load “ldr16” from
hidden file system

Hook BIOS int 13h
handler and

restore original
MBR

“ldr16” is
 loaded

and executed

Load VBR

Original mbr is
loaded

and executed

Load bootmgr

VBR is loaded
and executed

read bcd

Bootmgr is loaded
and executed

Load winload.exe

Substitute

EmsEnabled
 option with WinPe

Load ntoskrnl.exe,
hal.dll,kdcom.dll,b
ootvid.dll ant etc

distrort
/MININT option

Call
KdDebuggerInitialize1
from loaded kdcom.dll

substitute
kdcom.dll

with”ldr32”
or “ldr64"

Continue kernel
initialization

Load ”drv32”
 or “drv64"

Load bootmgr

Abusing Win PE mode: Workflow

MS Patch (KB2506014)

o BcdOsLoaderBoolean_WinPEMode option no longer

influences kernel-mode code signing policy

o Size of the export directory of kdcom.dll has been

changed

MS Patch (KB2506014)

o BcdOsLoaderBoolean_WinPEMode option no longer

influences kernel-mode code signing policy

o Size of the export directory of kdcom.dll has been

changed

MS Patch (KB2506014)

o BcdOsLoaderBoolean_WinPEMode option no longer

influences kernel-mode code signing policy

o Size of the export directory of kdcom.dll has been

changed

Bypassing KMCSP: Another Attempt

Patch Bootmgr and OS loader (winload.exe) to disable

KMCSP:

Bypassing KMCSP: Another Attempt

Patch Bootmgr and OS loader (winload.exe) to disable

KMCSP:

Bypassing KMCSP: Result

Bootmgr fails to verify OS loader’s integrity

Bypassing KMCSP: Result

Bootmgr fails to verify OS loader’s integrity

TDL4 Hidden File Systems

TDL’s Hidden Storage

o Reserve space in the end of the hard drive (not visible

at file system level analysis)

o Encrypted contents (stream cipher: RC4, XOR-ing)

o Implemented as a hidden volume in the system

o Can be accessed by standard APIs (CreateFile,

ReadFile, WriteFile, SetFilePointer, CloseHandle)

TDL4 Hidden FS

Growth direction

Disk partitions

One
sector

One
sector

Variable length Not more than 8 Mb
In

fe
ct

e
d

 M
B

R

TDL4 File System Layout

Debugging Bootkit with WinDbg

KD_RECV_CODE_OK

Data packet

Data Packet

KdDebuggerInitialize

KdSendPacket

KdReceivePacket

RETURN_STATUS

 WinDbg and kdcom.dll

RETURN_CONTROL

 TDL4 and kdcom.dll

 TDL4 and kdcom.dll

How to Debug TDL4 with WinDbg

o Patch ldr16 to disable kdcom.dll

substitution

o Reboot the system and attach to it with

WinDbg

o Manually load drv32/drv64

“TDL4 Analysis Paper: a brief introduction and How to Debug It”, Andrea Allievi

http://www.aall86.altervista.org/TDLRootkit/TDL4_Analysis_Paper.pdf

Debugging Bootkits with Bochs

•DEMO
http://www.youtube.com/watch?v=sT6N7Dr-G6s

Win64/Rovnix

Win64/Rovnix: Installation

Check if
already
infected

success

fail

Determine OS
Digit Capacity

Check OS
Version

Install Corresponding
Kernel-mode Driver

Initiate System Reboot

Overwrite Bootstrap
Code of Active Partition

Vista/Win7

Check Admin
Privileges

success

Windows 2000

Self Delete and Exit

Call ShellExecuteEx
API with “runas”

fail

Windows XP

Win64/Rovnix: Bootkit Overview

Load MBR

Load VBR

Load
bootmgr

Load
winload.exe or
winresume.exe

real mode

real mode/
protected mode

Load kernel
and boot

start drivers

real mode/
protected mode

Load
bootstrap

code

real mode/
protected mode

real mode

Target of
Win64\Rovnix

NTFS Bootstrap Code

JMP

[3 b]

Extended

BPB (EBPB)

[48 b]

Signature

[2 b]

Boot

Code

[426 b]

OEM

ID

[8 b]

BIOS

Parameter

Block (BPB)

[25 b]

 NTFS Boot Sector (Volume Boot Record)

NTFS Bootstrap Code

Win64/Rovnix: Infected Partition Layout

MBR VBR Bootstrap Code File System Data

VBR
Malicious

Code
File System Data

Bootstrap
Code

MBR

NTFS bootstrap code
(15 sectors)

Before Infecting

After Infecting

Malicious
Unsigned

Driver

Compressed
Data

o Win64/Rovnix overwrites bootstrap code of the

active partition

o The malicious driver is written either:
 before active partition, in case there is enough space

 in the end of the hard drive, otherwise

Win64/Rovnix: Bootkit Details

Load MBR
MBR is
 loaded

and executed

Load VBR

Patch bootmgr

VBR is loaded
and executed

Read BCD

Restore bootmgr,
hook int1 handler and

 copy itself over IDT

Load winload.exe

Bootloader parameters
are read from BCD

Load ntoskrnl.exe,
hal.dll,kdcom.dll,b
ootvid.dll ant etc

Hook
BlImgAllocateImageBuffer

Map malicious driver into
kernel-mode address space

Continue kernel
initialization

Load malicious
bootstrap code

Malicious bootstrap
 code is

 loaded and executed

Hook BIOS int 13h
handler and

restore original
bootstrap code

Original bootstrap
code is restored

Load bootmgr

Bootmgr is loaded
and receives control

Win64/Rovnix: Loading Unsigned Driver

o Insert malicious driver in BootDriverList of

KeLoaderBlock structure

o When kernel receives control it calls entry point of

each module in the BootDriverList

KeLoaderBlock

Ntoskrnl.exe
Malicious

Driver

Win64/Rovnix: Abusing Debugging Facilities

Win64/Rovnix:

o hooks Int 1h

 tracing

 handles hardware breakpoints (DR0-DR7)

o overwrites the last half of IDT (Interrupt Descriptor Table)

 is not used by OS

As a result the malware is able to:

 set up hooks without patching bootloader components

 retain control after switching into protected mode

Win64/Rovnix: Abusing Debugging Facilities

Win64/Rovnix:

o hooks Int 1h

 tracing

 handles hardware breakpoints (DR0-DR7)

o overwrites the last half of IDT (Interrupt Descriptor Table)

 is not used by OS

As a result the malware is able to:

 set up hooks without patching bootloader components

 retain control after switching into protected mode

•DEMO

Olmarik vs Rovnix

Characteristics Win64/Olmarik Win64/Rovnix

Privilege escalation MS10-092 
Reboot technique ZwRaiseHardError API ExitWindowsEx API

MBR/VBR infection MBR VBR (bootstrap code)

Loading driver ZwCreateDriver API
Inserting into boot driver list

of KeLoaderBlock structure

Payload injection
KeInitializeApc/

KeInstertQueueApc APIs

KeInitializeApc/

KeInstertQueueApc APIs

Self-defense
Kernel-mode hooks,

MBR monitoring 

Number of modules 10 2

Stability of code  

Threat complexity  

What Facilitates the Attack Vector?

o Untrusted platform problem

 BIOS controls boot process, but who controls it?

 The trust anchor is below point of attack

Bootmgr OS loader
OS kernel

dependencies

OS kernel

Boot-start
drivers

Non boot-start
kernel-mode drivers

Pre boot
firmware

Point of
Attack

 HiddenFsReader as a Forensic Tool

 HiddenFsReader as a Forensic Tool

Retrieves content of the malware hidden file system.

Supported malware: TDL3/TDL3+,TDL4;

ZeroAccess (will be added soon)

•DEMO
http://www.youtube.com/watch?v=iRpp6vn2DAE

HiddenFileReader

User mode

Kernel mode

HiddenFsRecognizer

HiddenFsDecryptor

SelfDefenceDisabler

LowLevelHddReader

HiddenFsReader (HFR) Architecture

Conclusion

 The bootkit technique allows malware to bypass KMCSP

 Return to old-school techniques of infecting MBR

 Win64/Olmarik (TDL4) is the first widely spread rootkit

targeting Win x64

 Win64/Rovnix relies on debugging facilities of the platform

to subvert KMCSP

 The only possible way of debugging bootkits is to use

emulators (Bochs, QEMU)

 The untrusted platform facilitates bootkit techniques

 HiddenFsReader is shared amongst malware researchers

References

 “The Evolution of TDL: Conquering x64”

http://www.eset.com/us/resources/white-papers/The_Evolution_of_TDL.pdf

 “Defeating x64: The Evolution of the TDL Rootkit”

http://www.eset.com/us/resources/white-papers/TDL4-CONFidence-2011.pdf

 “Hasta La Vista, Bootkit: Exploiting the VBR”

http://blog.eset.com/2011/08/23/hasta-la-vista-bootkit-exploiting-the-vbr

 Follow ESET Threat Blog
http://blog.eset.com

Questions

Thank you for your attention ;)

Aleksandr Matrosov
matrosov@eset.sk

@matrosov

Eugene Rodionov
rodionov@eset.sk

@vxradius

