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o Kernel-Mode Code Signing Policy: 

  It is “difficult” to load unsigned kernel-mode driver 

 

o Kernel-Mode Patch Protection (Patch Guard): 

  SSDT (System Service Dispatch Table) 

  IDT (Interrupt Descriptor Table) 

  GDT (Global Descriptor Table) 

  MSRs (Model Specific Registers) 

 

Obstacles for 64-bit Rootkits 



Bypassing Code Integrity Checks 



Subverting KMCSP 

o Abusing vulnerable, signed, legitimate kernel-mode 

driver 

o Switching off kernel-mode code signing checks by          

altering BCD data: 

 abusing WinPE Mode 

 disabling signing check 

 enabling test signing 

o Patching Bootmgr and OS loader 
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Attacking Windows Bootloader 
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Boot Process with Bootkit Infection 
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Evolution of Bootkits 

o  Bootkit PoC evolution: 

 eEye Bootroot (2005) 

 Vbootkit (2007) 

 Vbootkit v2 (2009) 

 Stoned Bootkit (2009) 

 Evilcore x64 (2011) 

 

 

o  Bootkit Threats evolution: 

 Win32/Mebroot (2007) 

 Win32/Mebratix (2008) 

 Win32/Mebroot v2 (2009) 

 Win64/Olmarik (2010/11) 

 Win64/Rovnix (2011) 

 

 



Win64/Olmarik 



TDL4 Installation on x64 
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BCD Elements determining KMCSP  
(before KB2506014) 

BCD option Description 

BcdLibraryBoolean_DisableIntegrityCheck 

(0x16000020) 

disables kernel-mode code integrity 

checks 

BcdOSLoaderBoolean_WinPEMode  

(0x26000022) 

instructs kernel to be loaded in 

preinstallation mode, disabling 

kernel-mode code integrity checks 

as a byproduct  

BcdLibraryBoolean_AllowPrereleaseSignatures 

(0x16000049) 

enables test signing 



Abusing Win PE mode: TDL4 modules 

Module name Description 

mbr (infected) infected MBR loads ldr16 module and restores original 

MBR in memory 

ldr16 hooks 13h interrupt to disable KMCSP and substitute 

kdcom.dll with ldr32 or ldr64 

ldr32 reads TDL4’s kernel-mode driver from hidden file 

system and maps it into kernel-mode address space 

ldr64 implementation of ldr32 module functionality for 64-bit 

OS 

int 13h – service provided by BIOS to communicate with IDE HDD controller 
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Abusing Win PE mode: Workflow 



MS Patch (KB2506014) 

o BcdOsLoaderBoolean_WinPEMode option no longer 

influences kernel-mode code signing policy 

o Size of the export directory of kdcom.dll has been 

changed 

 

 



Win64/Rovnix 



Win64/Rovnix: Installation 
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Win64/Rovnix: Bootkit Overview 
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Win64/Rovnix: Infected Partition Layout 
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o Win64/Rovnix overwrites bootstrap code of the 

active partition 

o The malicious driver is written either: 
 before active partition, in case there is enough space 

 to the end of the hard drive, otherwise 



Win64/Rovnix: Bootkit Details 
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Win64/Rovnix: Loading Unsigned Driver 

o Insert malicious driver in BootDriverList of 

KeLoaderBlock structure 

o When kernel receives control it calls entry point of 

each module in the BootDriverList 

KeLoaderBlock 

Ntoskrnl.exe 
Malicious 

Driver 



Win64/Rovnix: Abusing Debugging Facilities 

Win64/Rovnix: 

o hooks Int 1h 

 tracing 

 handles hardware breakpoints (DR0-DR7) 

o overwrites the last half of IDT (Interrupt Descriptor Table) 

 is not used by OS 

 

As a result the malware is able to: 

  set up hooks without patching bootloader components 

  retain control after switching into protected mode 
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Olmarik vs Rovnix 

Characteristics Win64/Olmarik Win64/Rovnix 

Privilege escalation MS10-092  
Reboot technique ZwRaiseHardError API ExitWindowsEx API 

MBR/VBR infection MBR VBR (bootstrap code) 

Loading driver ZwCreateDriver API 
Inserting into boot driver list 

of KeLoaderBlock structure 

Payload injection 
KeInitializeApc/ 

KeInstertQueueApc APIs 

KeInitializeApc/ 

KeInstertQueueApc APIs 

Self-defense 
Kernel-mode hooks,  

MBR monitoring  

Number of modules 10 2 

Stability of code   

Threat complexity   



Bootkit Attack Vector 



Modern Bootkits’ Approaches 

o Hooking BIOS 13h Interrupt Handler 

  Win64/Olmarik 

 

o Tracing Bootloader Components 

  Win64/Rovnix 

  “Deep Boot” (PoC) 

 

o Stealing a Processor’s Core 

  “EvilCore” (PoC) 



Tracing Bootloader Components 

o Microsoft Windows Bootloader Components: 

 

 

 

 

o Surviving processor’s execution mode switching 

  Malware has to retain control after execution mode 

switching 

  IDT and GDT are most frequently abused data 

structures 

Component Name Processor Execution Mode 

Bootstrap code real mode 

Bootmgr real mode/protected mode 

Winload.exe/Winresume.exe protected mode 



What Facilitates the Attack Vector? 

   

o Untrusted platform problem 

  BIOS controls boot process, but who controls it? 

  The trust of trust is below point of attack 
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How to Defend Against the Attack? 

  

oTo resist bootkit attacks we need the root of trust 

be above point of attack: 

  TPM 

  UEFI Secure Boot 
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Conclusion 

  Bootkits  ability to bypass KMCSP  

  Return of old-school techniques  MBR infections 

  Win64/Olmarik (TDL4)  1st widely spread Win64 

rootkit 

  Win64/Rovnix  debugging facilities to subvert 

KMCSP 

  Untrusted platform facilitates bootkit techniques 
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